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ABSTRACT

      As a manufacturer of the new ozone friendly refrigerants ICI needs to provide 

thermodynamic and physical property data on these new materials in a form suitable for the

refrigeration engineer to use. To generate tables of thermodynamic data and datasheets for fluids

such as R32 (CF2H2) and R125 (C2F5H) literature data for vapour pressure and liquid density are

correlated to standard equations while PVT, and speed of sound data are correlated to the

Martin-Hou equation of state.

     The aim of any procedure for correlating experimental data should be to place the correlation

within the experimental error of as many of the datapoints as possible. This can be achieved by

using Maximum Likelihood fitting with appropriate analysis of the residual errors. The great

advantage of this method is that the process starts with all the available experimental data for a

property  and avoids the vexed question of choosing datasets.  All the data are assessed in an

impartial fashion and only those datasets (or parts of datasets) that show significant

inconsistencies with the bulk of the data are eliminated from the final fit.

      The fitting methods will be explained using data for R32 as an example. The advantages and

disadvantages of this method will be discussed and the importance of the errors supplied by the

experimentalists will be emphasised.
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1. INTRODUCTION

As a company committed to the marketing and manufacture of the new ozone benign refrigerants

ICI is required to provide thermodynamic and physical property correlations on these new

materials to aid the companies that design and manufacture refrigeration systems. For the first of

these refrigerants (CF3-CFH2 or R134a) this information was required by our customers as early

as 1990; well before extensive data had been reported in the open literature. In addition the

refrigeration industry prefers a description of the superheated vapour  properties which is based

upon the Martin-Hou equation [1] rather than the more complex (but much more accurate)

equations of state that have been developed as reference correlations for R134a [2], R32 (CF2H2)

 and R125 (C2F5H) [3]. Hence, in 1990, when we were required to generate thermodynamic

tables and datasheets for R134a  we had a limited number of PVT datasets to work with and the

datasets quoting the smallest errors  had been measured at relatively high temperatures (>303K).

The traditional method of choosing one or two  of the datasets with the smallest errors and fitting

the correlation to them was felt to be inappropriate because of the  limited temperature range they

covered and the poor ability of the Martin-Hou equation of state to extrapolate accurately. In

seeking an alternative approach we decided that our aim should be to fit as many of the data

points as possible to within their experimental error. It was found that using these methods  we

could maximise our use of the data and overcome some of the limitations of the Martin-Hou

equation of state [4,5].

Now that significantly more experimental data are available from literature sources we have

decided to recorrelate the available data for the major pure refrigerants (R134a, R32, and R125)

in order to update the thermophysical property datasheets and tables that we provide to our



customers and to ensure that they are in good agreement with the best data available. The

methods used and an outline of the results will be reported here while the details of the fits and

the correlations generated will be reported elsewhere [6].

2.  THE CORRELATION OF THE DATA

As mentioned above the PVT and speed of sound data for each refrigerant are correlated to the

Martin-Hou equation of state:-

(1)

where P is pressure, T is temperature, V is specific volume, R is the gas constant and k, b, Aj, Bj

and Cj are the fitted parameters. The resulting correlation gave the ideal gas heat capacity as well

as the coefficients for the Martin-Hou equation of state.

   Vapour pressure data are correlated to the Wagner equation as modified by Ambrose [7], while

 liquid density data are correlated to a polynomial in X;

where X = (1-T/Tc)1/3 and the first coefficient is made equal to the critical density.

     The fitting programs use the Maximum Likelihood method [8,9] which requires that all

experimental data have estimates of the errors associated with each of the measured properties.

For these fitting methods to work most efficiently it is important that these errors are provided by

the experimentalist. This experimental error should reflect the reproducibility of the measurement

(of temperature, pressure etc.) and hence the influence of random effects within the experimental

apparatus.

   The fitting method when applied to PVT data seeks to minimise the following objective

function:-

( )
( )

P
RT

V b

A B C kT

V b
j j j

j
j

=
−

+
+ + −

− +
=
∑

exp

..
1

1 4



(2)

      In equation (2) T,P,V are the experimental temperature, pressure and volume respectively

while T*, P* and V* are the associated model values; σT, σP and σV are the standard deviations

calculated from the error in the experimental values and the summation is over all the datapoints.

The deviation of the correlation from the experimental point is normalised by the standard

deviation (σT, σP and σV) which has the effect of automatically weighting the correlation towards

those datasets with the smallest quoted errors. For the other correlations the objective function is

of similar form to that of equation (2) but with only two terms; T, P for vapour pressure and T,  ρ

for a liquid density correlation.

3.  STANDARDISED ERROR PLOTS

The traditional way of fitting data expresses the difference between the correlation and the

datapoint in terms of percentage error in one of the properties. For example in correlating vapour

pressure data the resulting fit would show  the difference between the datapoint and the

correlation in terms of %Error in pressure. Figure 1 shows parts of  two datasets and a fit

expressed in this way. In this case the points of dataset 2 are much more scattered than those of

dataset 1 and despite the small errors the correlator may be tempted to fit dataset 1 and ignore

dataset 2. However this type of diagram implies that all the errors are in the pressure

measurement and ignores the fact that both temperature and pressure are measured experimentally

and have associated errors with them.  To better represent the difference between the datapoint

and the correlation the overall error seen in Figure 1 has to be split into its components (error in

OF
T T P P V V

T P V

=
−







 +

−







 +

−





















∑
* * *

σ σ σ

2 2 2



temperature and error in pressure) and these individual errors can then be compared to the

experimental  errors quoted by the author. This is demonstrated in Figure 2 where the same data

have been compared to the same fit as produced by the Maximum Likelihood fitting routine. The

fitting software presents the result of a fit in terms of these residual errors divided by a standard

deviation derived from the quoted experimental errors given by the author. This "standardised

error" in both temperature and pressure for all datapoints can then be displayed graphically. Hence

the two graphs in Figure 2 together are equivalent to the graph in Figure 1 in that the data and the

correlation in both cases are the same but the residual errors  are expressed in different ways. The

great advantage of the graphs in Figure 2 is that the correlator can tell at a glance which points

have been fitted to the correlation to within their experimental error and for which points this is

not true. All points within "3 units of the x-axis on a standardised error plot for all measured

properties have been fitted to within their experimental errors. As seen in Figure 2 both sets of

vapour pressure data from Figure 1 can be fitted to within their experimental error using these

methods.

4.  THE FITTING PROCEDURE

    Once all the datasets have been collected together and errors obtained for all measured

quantities then each dataset is individually correlated to the equation to check for outliers and

datasets that were not experimental. Each dataset should show a random scatter of points around

the x-axis and if the error estimates are reasonable this scatter of points should be within "3 units

of the x-axis for all measured properties. Datasets that have been smoothed or derived from

correlations are readily detected and dropped at this stage.

     All the datasets are then correlated together to give a first fit which may show some points out

at up to 100 units from the x-axis (the program limits the maximum standardised error to "100



units). The most extreme datapoints are removed from the input file and the fit repeated and this

typically shows a substantial improvement as a few bad points can throw the correlation seriously

out. The process is repeated each time removing the points that seem to be in the most serious

disagreement with the bulk of the data. The aim of the fit is to eliminate those points or sets of

points that show systematic differences from the bulk of the data which can't be explained by

random experimental error.

     This process is illustrated in Figure 3 for the correlation of vapour pressure data for R32. The

graphs show the global correlation of 20 datasets. Each dataset has been correlated on its own; as

a result one set has been rejected because it was smoothed and several outliers have also been

deleted. The points used in the first global fit but deleted in subsequent fits are clearly marked in

Figure 3. This shows that after three fits and the deletion of a  small number of datapoints a good

fit is obtained with most of the points within "3 units of the x-axis and all within "4 units.

.5.  RESULTS

     As explained above the detailed fits for each refrigerant will be described elsewhere. Table 1

summarises our fitting work for the refrigerants and demonstrates the high proportion of the

available data that could be included in the fits.

     The advantages and disadvantages of these fitting methods can be summarised:-

Advantages:-

     Allows all datasets to be considered for a correlation- no preselection needed.

     Datasets and datapoints are deleted systematically using objective criteria.

     Standardised error plots highlight points that are inconsistent.

     Correlation is  weighted towards those datasets with the smallest errors.



     Allows the maximum use to be made of the data.

Disadvantages:-

     Does require good estimates of experimental errors from the data provider.

     Computationally intensive.

6.  CONCLUSIONS

     If it is accepted that the aim of the correlator is to use a mathematical expression to fit as many

of the experimental data points as possible to within their experimental error then the method

described here (or something similar) should be the method of choice.
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Table 1:- Summary of the Data Fitted for Three Refrigerants

Datasets Datapoints %Datapoints
Considered Used Considered Used Used

R32
Vapour Pressure 22 19 583 515 88
Liquid Density 11 9 177 125 71
PVT 14 12 1612 1321 82
Speed of Sound 2 2 135 102 76

R134a
Vapour Pressure 20 16 578 428 74
Liquid Density 15 14 228 186 82
PVT 12 11 1086 895 82
Speed of Sound 4 3 223 179 80

R125
Vapour Pressure 15 11 500 414 83
Liquid Density 8 8 123 116 94
PVT 13 13 1044 785 75
Speed of Sound 2 2 221 210 95



FIGURE CAPTIONS

Fig. 1. The difference between  experimental data and a vapour pressure correlation for R32

expressed in terms of  % Error in Pressure = (P(exp)-P(corr))*100/P(corr). Partial datasets shown

are:- Set 1 [10], Set 2 [11].

Fig. 2.  The difference between  experimental data and a vapour pressure correlation for R32

expressed as standardised error plots for both temperature and pressure. Standardised error in

temperature =  (T-T*)/σT ; standardised error in pressure = (P-P*)/σP. Key to both graphs

given in top diagram. Partial datasets shown are:- Set 1 [10], Set 2 [11].

Fig. 3.  Standardised error plots for the fitting of R32 vapour pressure data showing the sequential

dropping of outlying datapoints until a good fit is obtained. Key to both graphs is given in the

lower diagram. The key shows which points were dropped after the specified fit with the

remaining data (19 datasets) being correlated in the fourth and final fit to within experimental

error.
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Statistical Plot of Pressure Errors
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Statistical Plot of Temperature Errors

240 250 260 270
-3

-2

-1

0

1

2

3

Temperature (K)

S
ta

nd
ar

d.
 E

rr
or

 in
 T

em
pe

ra
tu

re

Set 1 Set 2

Figure 2



Statistical Plot  of Temperature Errors
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